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Abstract

The rapid advance of computer technologies in data processing, collection, and storage has
provided unparalleled opportunities to expand capabilities in production, services, commu-
nications, and research. However, immense quantities of high-dimensional data renew the
challenges to the state-of-the-art data mining techniques. Feature selection is an effective
technique for dimension reduction and an essential step in successful data mining appli-
cations. It is a research area of great practical significance and has been developed and
evolved to answer the challenges due to data of increasingly high dimensionality. Its direct
benefits include: building simpler and more comprehensible models, improving data mining
performance, and helping prepare, clean, and understand data. We first briefly introduce
the key components of feature selection, and review its developments with the growth of
data mining. We then overview FSDM and the papers of FSDM10, which showcases of a vi-
brant research field of some contemporary interests, new applications, and ongoing research
efforts. We then examine nascent demands in data-intensive applications and identify some
potential lines of research that require multidisciplinary efforts.
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1. An Introduction to Feature Selection

Data mining is a multidisciplinary effort to extract nuggets of knowledge from data. The
proliferation of large data sets within many domains poses unprecedented challenges to
data mining (Han and Kamber, 2001). Not only are data sets getting larger, but new
types of data become prevalent, such as data streams on the Web, microarrays in genomics
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and proteomics, and networks in social computing and system biology. Researchers are
realizing that in order to achieve successful data mining, feature selection is an indispensable
component (Liu and Motoda, 1998; Guyon and Elisseeff, 2003; Liu and Motoda, 2007). It
is a process of selecting a subset of original features according to certain criteria, and
an important and frequently used technique in data mining for dimension reduction. It
reduces the number of features, removes irrelevant, redundant, or noisy features, and brings
about palpable effects for applications: speeding up a data mining algorithm, improving
learning accuracy, and leading to better model comprehensibility. Various studies show
that some features can be removed without performance deterioration (Ng, 2004; Donoho,
2006). Feature selection has been an active field of research for decades in data mining,
and has been widely applied to many fields such as genomic analysis (Inza et al., 2004),
text mining (Forman, 2003), image retrieval (Gonzalez and Woods, 1993; Swets and Weng,
1995), intrusion detection (Lee et al., 2000), to name a few. As new applications emerge in
recent years, many challenges arise requiring novel theories and methods addressing high-
dimensional and complex data. Feature selection for data of ultrahigh dimensionality (Fan
et al., 2009), steam data (Glocer et al., 2005), multi-task data (Liu et al., 2009; G. Obozinski
and Jordan, 2006), and multi-source data (Zhao et al., 2008, 2010a) are among emerging
research topics of pressing needs.
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Figure 1: A unified view of a feature selection process

Figure 1 presents a unified view for a feature selection process. A typical feature se-
lection process contains two phases: feature selection, and model fitting and performance
evaluation. The feature selection phase contains three steps: (1) generating a candidate set
containing a subset of the original features via certain research strategies; (2) evaluating
the candidate set and estimating the utility of the features in the candidate set. Based
on the evaluation, some features in the candidate set may be discarded or added to the
selected feature set according to their relevance; and (3) determining whether the current

5



Liu, Motoda, Setiono, and Zhao

set of selected features are good enough using certain stopping criterion. If it is, a feature
selection algorithm will return the set of selected features, otherwise, it iterates until the
stopping criterion is met. In the process of generating the candidate set and evaluating it, a
feature selection algorithm may use the information from the training data, current selected
features, target learning model, and given prior knowledge (Helleputte and Dupont, 2009)
to guide their search and evaluation. Once a set of features is selected, it can be used to
filter the training and test data for model fitting and prediction. The performance achieved
by a particular learning model on the test data can also be used to as an indicator for
evaluating the effectiveness of the feature selection algorithm for that learning model.

In the process of feature selection, the training data can be either labeled, unlabeled
or partially labeled, leading to the development of supervised, unsupervised and semi-
supervised feature selection algorithms. In the evaluation process, a supervised feature
selection algorithm (Sikonja and Kononenko, 2003; Weston et al., 2003; Song et al., 2007;
Zhang et al., 2008) determines features’ relevance by evaluating their correlation with the
class or their utility for achieving accurate predication, and without labels, an unsupervised
feature selection algorithm may exploit data variance or data distribution in its evaluation
of features’ relevance (Dash and Liu, 2000; Dy and Brodley, 2004; He et al., 2005). A semi-
supervised feature selection algorithm (Zhao and Liu, 2007c; Xu et al., 2009) uses a small
amount of labeled data as additional information to improve unsupervised feature selection.

Depending on how and when the utility of selected features is evaluated, different strate-
gies can be adopted, which broadly fall into three categories: filter, wrapper and embed-
ded models. To evaluate the utility of features, in the evaluation step, feature selection
algorithms of filter model rely on analyzing the general characteristics of data and evaluating
features without involving any learning algorithm. On the other hand, feature selection algo-
rithms of wapper model require a predetermined learning algorithm and use its performance
on the provided features in the evaluation step to identify relevant feature. Algorithms of
the embedded model, e.g., C4.5 (Quinlan, 1993), LARS (Efron et al., 2004), 1-norm sup-
port vector machine (Zhu et al., 2003), and sparse logistic regression (Cawley et al., 2007),
incorporate feature selection as a part of the model fitting/training process, and features’
utility is obtained based on analyzing their utility for optimizing the objective function of
the learning model. Compared to the wrapper and embedded models, algorithms of the
filter model are independent of any learning model, therefore do not have bias associated
with any learning models, one advantage of the filter model. Another advantage of the filter
model is that it allows the algorithms to have very simple structure, which usually employs
a straightforward search strategy, such as backward elimination or forward selection, and
a feature evaluation criterion designed according to certain criterion. The benefit of the
simple structure is two-folds. First, it is easy to design, and after it is implemented, it
is also easy to understand for other researchers. This actually explains why most feature
selection algorithms are of the filter model. And in real world applications, many most
frequently used feature selection algorithms are also filters. Second, since the structure of
the algorithms is simple, they are usually very fast. On the other hand, researcher also
recognized that compared to the filter model, feature selection algorithms of the wrapper
and embedded models can usually select features that result in higher learning performance
for a particular learning model, which is used in the feature selection process. Comparing
with the wrapper model, feature selection algorithms of embedded model are usually more
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efficient, since they look into the structure of the involved learning model and use its proper-
ties to guide feature evaluation and search. In recent years, the embedded model is gaining
increasing interests in feature selection research due to its superior performance. Currently,
most embedded feature selection algorithms are designed by applying L0 norm (Weston
et al., 2003; Huang et al., 2008) or L1 norm (Liu et al., 2009; Zhu et al., 2003; Zhao et al.,
2010b) as a constraint to existing learning models to achieve a sparse solution. When the
constraint is of L1 norm form, and the original problem is convex, existing optimization
techniques can be applied to obtain the unique global optimal solution for the regularized
problem in a very efficient way (Liu et al., 2009).

Feature selection algorithms with the filter and embedded models may return either a
subset of selected features or the weights (measuring features’ relevance) of all features.
According to the type of the output, feature selection algorithms can be divided into ei-
ther feature weighting algorithms or subset selection algorithms. Feature selection
algorithms of the wrapper model usually return feature subsets, therefore are subset selec-
tion algorithms. To the best of our knowledge, currently, most feature selection algorithms
are designed to handle learning tasks with single data source. Researchers have started
exploring the capability of using multiple auxiliary data and prior knowledge sources for
multi-source feature selection (Zhao and Liu, 2008) to effectively enhance the reliability
of relevance estimation (Lu et al., 2005; Zhao et al., 2008, 2010a).

Given a rich literature exists for feature selection research, a systematical summariza-
tion and comparison studies are of necessity to facilitate the research and application of
feature selection techniques. Recently, there have been many surveys published to serve
this purpose. A comprehensive surveys of existing feature selection techniques and a gen-
eral framework for their unification can be found in (Liu and Yu, 2005). Guyon and Elis-
seeff (2003) reviewed feature selection algorithms from statistical learning point of view.
In (Saeys et al., 2007), the authors provided a good survey for applying feature selection
techniques in bioinformatics. In (Inza et al., 2004), the authors reviewed and compared
the filter with the wrapper model for feature selection. In (Ma and Huang, 2008), the
authors explored the representative feature selection approaches based on sparse regular-
ization, which is a branch of embedded feature selection techniques. Representative feature
selection algorithms are also empirically evaluated in (Liu et al., 2002; Li et al., 2004; Sun
et al., 2005; Lai et al., 2006; Ma, 2006; Swartz et al., 2008; Murie et al., 2009) under different
problem settings and from different perspectives. We refer readers to these survey works to
obtain comprehensive understanding on feature selection research.

2. Toward Cross-Discipline Collaboration in Feature Selection Research

Knowledge discovery and data mining (KDD) is a multidisciplinary effort. Researchers
and practitioners in multiple disciplines and various IT sectors confront similar issues in
feature selection, and there is a pressing need for continuous exchange and discussion of
challenges and ideas, exploring new methodologies and innovative approaches. The inter-
national workshop on Feature Selection in Data Mining (FSDM) serves as a platform to
further the cross-discipline, collaborative effort in feature selection research. FSDM 20051

1. http://enpub.fulton.asu.edu/workshop/
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and 20062 were held with the SIAM Conference on Data Mining (SDM) 2005 and 2006,
respectively. FSDM 20083 was held with the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD) 2008.
And FSDM 20104 is the fourth workshop of this series, and is held at the 14th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD) 2010. This collection con-
sists of one keynote and 8 peer-reviewed papers, among which, there are three on exploring
novel problems in feature selection research; four on developing new feature selection algo-
rithms or improving existing ones; two on designing effective algorithms to solve real-world
problems. Below we give an overview on the papers of FSDM 2010.

Two novel feature selection research problems are investigated. In the keynote pa-
per (Chawla, 2010), the author studies the interesting research problem of detecting feature
dependence, which is also the topic of (Salehi et al., 2010). Both works are based on the
techniques related to association rule mining. A concept that is closely related to feature de-
pendence is feature interaction, in which a set of features cooperate with each other to define
the target concept. The problem of feature interaction is studied in (Jakulin and Bratko,
2004; Zhao and Liu, 2007b). Besides detecting feature dependence, the problem of feature
extraction for heterogeneous data with ontology information is also studied in (Gorodetsky
and Samoylov, 2010). It is an interesting feature extraction problem related to information
fusion and multi-source feature selection (Zhao and Liu, 2008).

The filter, wrapper, and embedded models are the major models used in feature selec-
tion for algorithm design. In (Esseghir, 2010), an interesting hybrid approach is proposed to
combine the wrapper with the filter model through a so-called greedy randomized adaptive
search procedure (GRASP). The advantage of the method is that it can inherit the strength
of both models to improve the performance of feature selection. In (Jaiantilal and Grudic,
2010), a new feature selection algorithm based on the embedded model is proposed. The
intrinsic point of the paper is to develop a random sampling framework, which can effec-
tively estimate feature weights for weighted L1 penalty based sparse learning models (Zou,
2006). The pairwise sample similarity is an important way to depict the relationships among
samples, and has been widely used in designing feature selection algorithms (Zhao and Liu,
2007a). Improving the quality of similarity measurements is beneficial to the feature selec-
tion algorithms by taking sample similarity as their input. In (Zagoruiko et al., 2010), the
authors propose to apply FRiS-function to improve similarity estimation. And in (Xie et al.,
2010), the authors proposed to construct continuous variables from categorical features to
achieve better similarity estimation.

Text mining is an important research area, where feature selection is widely applied for
dimension reduction. In (Singh et al., 2010), the authors develop a new feature evaluation
criterion for text mining based on Gini coefficient of inequality. Their empirical study
shows that the proposed criterion significantly improve the learning performance compared
to several existing criteria in feature selection, including mutual information, information
gain and chi-square statistic. Besides text mining, feature extraction for outlier detection
is also studied. In (Nguyen and Gopalkrishnan, 2010), the authors propose to use weight
adjusted scatter matrices in feature extraction to address the class unbalance issue in outlier

2. http://enpub.fulton.asu.edu/workshop/2006/
3. http://www.psb.ugent.be/ yvsae/fsdm08/index.html
4. http://featureselection.asu.edu/fsdm10/index.html
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detection, and empirical results show that the proposed method can bring about nontrivial
improvement over the existing algorithms.

3. Advancing Feature Selection Research

The current development in scientific research will lead to the prevalence of ultrahigh di-
mensional data generated from the high-throughput techniques (Fan et al., 2009) and the
availability of many useful knowledge sources resulting from collective work of cutting-edge
research. Hence one important research topic in feature selection is to develop computa-
tional theories that help scientists to keep up with the rapid advance of new technologies
on data collection and processing. We also notice that there is a chasm between symbolic
learning and statistical learning that prevents scientists from taking advantage of data and
knowledge in a seamless way. Symbolic learning works well with knowledge and statisti-
cal learning works with data. Explanation-based learning is one such example that would
provide an efficient way to bridge this gap. The technique of explanation-based feature
selection will enable us to use the accumulated domain knowledge to help narrow down
the search space and explain the learning results by providing reasons why certain features
are relevant. Below are our conjectures about some interesting research topics in feature
selection of potential impact in the near future.

Feature selection for ultrahigh dimensional data: selecting features on data sets with
millions of features (Fan et al., 2009). As high-throughput techniques keep evolving, many
contemporary research projects in scientific discovery generate data with ultrahigh dimen-
sionality. For instance, the next-generation sequencing techniques in genetics analysis can
generate data with several giga features on one run. Computation inherent in existing
methods makes them hard to directly handle data of such high dimensionality, which raises
the simultaneous challenges of computational power, statistical accuracy, and algorithmic
stability. To address these challenges, researchers need to develop efficient approaches for
fast relevance estimation and dimension reduction. Prior knowledge can play an important
role in this study, for example, by providing effective ways to partition original feature space
to subspaces, which leads to significant reduction on search space and allows the application
of highly efficient parallel techniques.

Knowledge oriented sparse learning: fitting sparse learning models via utilizing multiple
types of knowledge. This direction extends multi-source feature selection (Zhao and Liu,
2008). Sparse learning allows joint model fitting and features selection. Given multiple
types of knowledge, researchers need to study how to use knowledge to guide inference for
improving learning performance, such as the prediction accuracy, and model interpretabil-
ity. For instance, in microarray analysis, given gene regulatory network and gene ontology
annotation, it is interesting to study how to simultaneously infer with both types of knowl-
edge, for example, via network dynamic analysis or function concordance analysis, to build
accurate prediction models based on a compact set of genes. One direct benefit of utilizing
existing knowledge in inference is that it can significantly increase the reliability of the rel-
evance estimation (Zhao et al., 2010a). Another benefit of using knowledge is that it may
reduce cost by requiring fewer samples for model fitting.

Explanation-based feature selection (EBFS): feature selection via explaining training
samples using concepts generalized from existing features and knowledge. In many real-
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world applications, the same phenomenon might be caused by disparate reasons. For ex-
ample, in a cancer study, a certain phenotype may be related to mutations of either genes
A or gene B in the same functional module M. And both gene A and gene B can cause the
defect of M. Existing feature selection algorithm based on checking feature/class correla-
tion may not work in this situation, due to the inconsistent (variable) expression pattern
of gene A and gene B across the cancerous samples5. The generalization step in EBFS
can effectively screen this variation by forming high-level concepts via using the ontology
information obtained from annotation databases, such as GO. Another advantage of EBFS
is that it can generate sensible explanations to show why the selected features are related.
EBFS is related to the research of explanation-based learning (EBL) and relational learning.

Feature selection remains and will continue to be an active field that is incessantly
rejuvenating itself to answer new challenges.
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