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Abstract 
Expert elicitation is a structured approach for obtaining judgements from experts about items of interest to decision makers. This method has been increasingly applied in the energy domain to collect information on the future cost, technical performance, and associated uncertainty of specific energy technologies. This article has two main objectives: (1) to introduce the basics of expert elicitations, including their design and implementation, highlighting their advantages and disadvantages and their potential to inform policy making and energy system decisions; and (2) to discuss and compare the results of a subset of the most recent expert elicitations on energy technologies, with a focus on future cost trajectories and implied cost reduction rates. We argue that the data on future energy costs provided by expert elicitations allows for more transparent and robust analyses that incorporate technical uncertainty, which can then be used to support the design and assessment of energy and climate change mitigation policies.  
 
Key Words: energy technologies; R&D investments; expert elicitations; uncertainty 
 
Acknowledgements: The authors would like to thank the Editor and the Managing Editor for their extensive support, and three anonymous referees for excellent comments which helped to improve the article significantly. We would also like to thank all the research groups which provided their original expert elicitation data for the analysis (see Table 1). This paper builds on a previous contribution commissioned by the United Nations Environment Program and produced through the Green Growth Knowledge Platform (GGKP) Research Committee on Technology and Innovation. The original analysis, which includes detailed data, can be accessed at: http://www.greengrowthknowledge.org/resource/future-energy-technologies-overview-expert-elicitations. V. Bosetti would like to acknowledge funding from the ERC, grant agreement n° 336703 – RISICO. L. D. Anadón, L. Aleluia Reis and E. Verdolini would like to acknowledge funding from the European Union’s Horizon 2020 research and innovation programme, grant agreement n° 730403 -- INNOPATHS. The authors alone are responsible for the views expressed in this paper, which do not necessarily represent the decisions or policies of the funding bodies. 
  



2 

 
INTRODUCTION 
Technological innovation in the energy sector contributes to several societal goals, including mitigating climate 
change and local air pollution, and increasing energy access and energy security (Anadón et al. 2016b). As argued 
in a number of studies that use past data to analyze the potential role for research, development and 
demonstration (RD&D) to lower the costs of energy technologies, 1 public investment in RD&D has played and will 
continue to play a key role in technological innovation in energy. However, the design of energy technology RD&D 
policies is challenging, with one of the foremost challenges being the uncertainty surrounding the outcomes of 
new research programs.  
Expert elicitations provide a structured approach for obtaining expert judgements from scientists, engineers, and 
other analysts who are knowledgeable about particular issues and variables of interest (e.g., the cost of inverters 
in PV panels). Expert elicitations are an important source of information concerning the future costs, technical 
performance, and associated uncertainties of technologies. For this reason, they have been increasingly used to 
collect information from experts on a range of energy technologies, including bioelectricity, biofuels, solar, wind, 
nuclear, and carbon capture and storage (CCS), to inform energy technology policy.  

This article, which is part of symposium on expert elicitation,2 explores the role of expert elicitations in helping to 
address uncertainty concerning the future for energy technologies.3 This information complements other sources 
of energy technology cost estimates, such as historical data or energy technology models. The article has two 
main objectives: (1) to describe the basics of expert elicitations, with a focus on energy technologies; and (2) to 
analyze the results of a subset of the most recent expert elicitations on energy technologies. With this in mind, 
the next section presents an overview of expert elicitations. Then we discuss challenges for the design and use of 
expert elicitations for energy technologies. This is followed by a discussion of the results of a subset of energy 
                                                           
1  See Appendix A in the on-line supplementary materials for a full list of references and a detailed discussion of how 
investments in RD&D affect the costs of energy technology. 
2 The other article is Colson-Cooke (2018), which focuses on the validation of expert elicitations.  
3 This  article builds on Bosetti et al. (2016) and Verdolini et al. (2016). 
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technology expert elicitations, and a comparison of the future cost trajectories and cost reduction rates implied 
by these studies with results that were produced using different data collection methods. Throughout the article, 
we discuss how expert elicitations complement the information obtained through other methods. We conclude 
with a summary and discussion of future research needs in this area. 

THE BASICS OF EXPERT ELICITATIONS AND APPLICATIONS TO ENERGY TECHNOLOGIES 
This section first defines and discusses key features of expert elicitations in general and then describes 
applications of expert elicitations to energy technologies in particular, including the expert elicitation process and 
the structure and characteristics of energy technology elicitations.  
Definitions and Key Features 
As noted in the Introduction, expert elicitation is a methodology for obtaining judgements – specifically, for 
eliciting subjective probability distributions – from experts about items of interest to decision makers (Hora and 
Von Winterfeldt 1997). Expert elicitation methods were pioneered in the 1960s and 1970s, mainly to support 
decisions aimed at addressing extreme events.4 While expert elicitations were first envisioned as a way of 
collecting existing knowledge stored in the heads of experts, it was later argued that the elicitation process helps 
experts develop probability distributions that represent their knowledge (Morgan and Henrion 1990). Developing 
such probability distributions is crucial to making informed decisions under uncertainty. However, expert 
elicitations can only be applied when there are experts that have knowledge that can ‘support informed judgment 
and prediction about the issues of interest’ (Morgan 2014).  
Expert elicitation methodologies complement “backward-looking” methodologies.5 As noted by Farmer and 
Lafond (2015), elicitations overcome some of these methods’ shortcomings in four key ways. First, expert 
elicitations draw on the latest information, which may not yet be codified in the literature, and also provide 
estimates for technologies that are new to the market or have little deployment history, such as CCS or new 
                                                           
4  For example, see Howard et al. (1972) on mitigating the destructive force of hurricanes by seeding them with silver iodide. 
5 Such backward-looking methodologies include using learning curves and modeling based on historical data to project 
technology costs. 
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battery chemistries. Second, expert elicitation methodologies are not tied to the assumption that previous 
trajectories will continue (Chan et al. 2011); rather they account for the fact that RD&D is, by its nature, uncertain 
and that future trends in technology development may be substantially different from historical trends.6  Third, 
expert elicitations can distinguish between both technologies and the impacts of funding at different stages of the 
RD&D cycle (e.g., invention, pilot, diffusion) (NRC 2007). Fourth, the nature of the uncertainty represented by 
expert elicitations is quite different from the uncertainty in forecasts based on historical data; that is, uncertainty 
in forecasts is typically related to variability in the data, rather than uncertainty about the future.   
Applications to Energy Technologies 
Numerous energy technology expert elicitation studies have been conducted over the last ten years (see Table 
1).7 Insights from these expert elicitations may be used directly to inform RD&D programs in individual 
technologies. More specifically, elicitation results may be used directly when planners have a fixed budget to 
allocate across different components (e.g., solar cells versus inverters) or variations of a technology (e.g., purely 
organic versus 3rd generation solar cells). Moreover, elicitations can provide rich qualitative information, which 
can inform RD&D planning. For example, in response to specific questions about how to address key scientific and 
technological bottlenecks in nuclear power, experts emphasized the need to develop ceramic composites and 
nanomaterials to withstand extreme temperatures and high-radiation fields, as well as the need for improved 
simulation codes (Anadon et al. 2012). 
Elicitation results may also be used indirectly as inputs to energy-economy or climate-economy models to inform 
RD&D allocation decisions across different technologies and to estimate societal outcomes (see Marangoni et al. 
2017;  Nemet 2009; and Anadón et al. 2017). This is useful because the allocation of public RD&D funds across a 
range of technologies and programs (e.g., solar, nuclear, biofuels, vehicles, etc.) requires information on how 
technologies interact with each other and with climate policies. For example, an important input to RD&D 
portfolio decisions is whether technologies are substitutes (e.g., nuclear and CCS) or complements (e.g., solar and 
                                                           
6 For example, Goldemberg et al. (2004) document the significant acceleration in cost reduction for sugarcane ethanol in 
Brazil after 1985. An analysis based on past trends would have been too pessimistic. 
7 More details about these studies are presented in Appendix B of the on-line supplementary materials. 
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storage) in the economy. Moreover, different technologies might play a different role depending on the 
stringency of the decarbonization target. Thus, it is crucial to integrate results of expert elicitations with models of 
the economy and the energy system.  
Table 1: Energy Technology Expert Elicitations 

Research Group Publication   Research Group  Publication 
Bioelectricity   Carbon Capture and Storage (CCS) 

UMass  Baker et al. (2008a)*   UMass  Baker et al. (2009b) 
Harvard Anadón et al. (2011, 2014)*    Harvard Chan et al. (2011) 

FEEM Fiorese et al. (2014)*   Duke Chung et al. (2011) 
Biofuel   UMass  Jenni et al.(2013) 

UMass  Baker and Keisler (2011)*   FEEM  Ricci et al. (2014) 
Harvard Anadón et al. (2011, 2014)*   CMU Rao et al. (2006) 

FEEM Fiorese et al. (2013)*   NRC NRC (2007) 
Solar   Vehicles 

UMass  Baker et al. 2009a*   UMass Baker et al. (2010) 
Harvard Anadón et al. (2011, 2014) *   FEEM Catenacci et al. (2013) 

FEEM Bosetti et al. (2012)*   Harvard Anadón et al. (2011, 2014)  
NearZero Inman (2012)   Other 

CMU Curtright et al. (2008)*   Harvard - Utility scale storage Anadón et al. (2011, 2014) 
Nuclear   NRC – IGCC NRC (2007) 

UMass  Baker et al.(2008b)*   Stanford - Natural Gas Bistline (2013) 
Harvard and FEEM Anadón et al. (2012)*   GHG MI – Wind Gillenwater (2013) 

CMU Abdulla et al.(2013)* - GEN III only   LBNL - Wind Wiser et al. (2016) 
   UCL - Low Carbon Energy Usher and Strachan (2013) 

Note: Appendix B in the on-line supplementary materials provides more details for each study. UMass = University of Massachusetts; 
Harvard = Harvard University; FEEM = Fondazione Eni Enrico Mattei; CMU = Carnegie Mellon University; * indicates studies whose results 
are discussed later in the article. [ 
 
The Expert Elicitation Process for Energy Technologies  
Expert elicitations are typically codified by researchers in a protocol. The codification of this protocol requires a 
set of steps (see Jenni and van Luik 2010), which include8:  

1. Define the Objective of the Study. For energy technology elicitations, the objective may be to inform 
analysts about the future potential of a technology or to inform RD&D policy decisions.   

2. Select an Elicitation Mode. The mode can be in-person, online,  by mail, or a combination of these modes, 
and may or may not involve interactions between experts. 

                                                           
8 See Appendix B in the on-line supplementary materials for more detail on these steps. 



6 

3. Identify the Experts. Experts can vary in their experience, geographic location, and sectoral background 
(i.e., academia, public, or private), among other attributes. 

4. Structure the Elicitation. This refers to the development of the elicitation protocol itself (discussed in 
detail in the next sub-section), which typically includes defining the variables of interest -- or metrics -- 
(e.g., the future cost of solar technologies, the future efficiency of gas turbines), as well as the target year, 
the conditioning variables (e.g., whether experts are asked to consider the impact of possible future levels 
of RD&D spending), and the way in which uncertainty is coded.9  

5. Perform Pilot Elicitation Survey. Protocols are tested with a subset of experts in the field, using their 
feedback to improve the clarity of the questions and reduce errors and bias.   

6. Perform Elicitation. In this step, experts’ estimates are collected and processed. 
7. Analyze and Present Results. Elicitation data can be analyzed and reported in several ways, with one of 

the most important choices (discussed later) being whether to report disaggregated or aggregated data.  

Structure and Key Characteristics of  Energy Technology Elicitations  
We next describe key aspects of the structuring process for expert elicitations: the definition of metrics that 
experts are asked to estimate, the technologies of interest, the specification of the target year for the estimates, 
the conditioning variables, and the way in which uncertainty is encoded.  
Metrics 
“Metrics” refer to the specific quantity that experts are asked to assess. The definition of this quantity must pass 
“the clarity test” (Howard 1988): that is, there must be a clear quantity that can be universally agreed upon once 
the event of interest has taken place. The energy technology expert elicitation studies in Table 1 vary in terms of 
the level of aggregation of the metrics they assess, ranging from very specific technical metrics such as “sorbent 
concentration” for CCS, to more aggregated characteristics of technologies such as capital cost and efficiency, to 
                                                           
9 This step also entails other important tasks, such as developing background materials on the topic, training materials (to 
reduce experts’ error and bias), and visual aids. See Appendix B in the on-line supplementary materials for details.  
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highly aggregated cost metrics such as the levelised cost of energy (LCOE)10 for a specific technology. There are 
inherent tradeoffs in the choice of metric. For example, disaggregated metrics require a great deal of time to 
assess because, in many cases, a large number of such metrics may be needed to provide decision-relevant 
insights. Moreover, because aggregated cost metrics have one foot in technological understanding and one foot 
in economics, they are more directly useful to decision makers. However, the experts that have a deep 
understanding of the technology may not be the same as the experts that have a deep understanding of 
economic interactions, making it more challenging for one person to provide good estimates of an aggregate 
metric. 
Technologies and target year 
The number and types  of (sub-)technologies covered also vary significantly across studies, with some assessing a 
single specific technology category (e.g., small modular reactors), some asking separate questions about different 
technologies within a technology area (e.g., large scale Gen III/III+, large-scale Gen IV, and small modular 
reactors), some aggregating the technologies by assessing only those technologies that experts believe will be 
most commercially viable (e.g., enzymatic hydrolysis for biofuels), and some asking experts to assess the future of 
an entire technology class (e.g., CCS).  
The target year is the year for which the parameters are being estimated. In existing energy technology 
elicitations, this ranges from 2020 to 2050, with some studies asking experts about intermediate time points (e.g., 
2030). 
Conditioning variables 
Conditioning variables are the variables that the experts are asked to consider when providing their judgements. 
These might include assumptions about future input prices, a characterization of government RD&D efforts to 
support the specific technology (e.g., an increasing or decreasing level of future government investment), other 
key energy or environmental policy (e.g., a carbon tax), and/or the future state of the economy (e.g., business-as-
                                                           
10 The LCOE is the average total cost to build and operate a power-generating asset over its lifetime divided by the total 
energy output of the asset over that lifetime. The LCOE is used to compare the costs of different methods of electricity 
generation (e.g., solar and nuclear) on a consistent basis.  
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usual conditions for economic growth). More specifically, the analysts designing elicitations will identify which 
conditions to consider explicitly and which to consider implicitly, leaving the experts to make judgments about 
them.  
The most important conditioning variable in the studies listed in Table 1 is the public RD&D budget for that 
technology. These budget levels vary widely across the twenty-one studies that explicitly specify them. The 
studies used a range of approaches to identify such budgets (e.g., they considered the number of labs that would 
be able to make use of the funding, or asked the individual expert to recommend a funding amount, or asked 
experts to consider business-as-usual levels). In the five studies that did not specify RD&D budgets, an implicit 
part of the elicitation was for the expert to think about what future budgets might be and to average over all of 
the possible futures. Clearly, there is a tradeoff between fully specifying external conditions (such as economic 
growth and trade policies), which requires many more questions to the experts, and leaving them unspecified 
(i.e., unconditioned), which may put experts in the position of providing guesses rather than truly informed 
estimates.  
Encoding uncertainty 
The encoding of uncertainty refers to the way in which the experts are asked about probabilities concerning the 
metrics of interest. This can be done in two ways. The first option entails  eliciting the value of the metric in 
question, whereby experts are asked to assign values to different percentiles of the distribution over future costs 
(for instance, they are asked to provide values for the 10th, 50th and 90th percentiles). In the second option, the 
probabilities associated with specified endpoints of the metric in question are assessed, whereby the experts are 
asked to assign a probability that a future metric (say, the capital cost of solar PV) will achieve at least some 
specified end point. Both approaches involve trade-offs (in particular, see the discussion on bias in the next 
section). Using both methods may provide information on the robustness of the elicited values, but it is time-
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consuming for experts, meaning that fewer values can be assessed.11  Thus, only 18% of the studies in Table 1 
used both percentile and probabilities, while 46% used only percentiles and 36% used only probabilities. 
 
CHALLENGES FOR DESIGNING AND USING EXPERT ELICITATION FOR ENERGY 
TECHNOLOGIES 
This section discusses the three main challenges identified in the literature concerning the use of expert 
elicitations to support analysis and policy: 1. designing elicitation protocols to minimize experts’ biases (which is 
relevant to the step of structuring the elicitation); 2. identifying and engaging a highly-qualified and diverse pool 
of experts (which is relevant to the step of selecting experts); and 3. choosing a method for aggregating results 
(which is relevant to the step of presenting the data collected).  

Designing Protocols to Minimize Experts’ Biases 
Although expert elicitations rely on individuals who are experts in the field under investigation, these experts are 
not necessarily proficient at expressing themselves in terms of probability (Winkler 1967). Experts, like most 
people, are subject to common biases, such as anchoring, status quo trap, and framing, among others (Tversky 
and Kahneman 1974; Hammond et al 1999).12 The protocols and methodologies for structured expert elicitations 
were developed to reduce these biases (see Morgan and Henrion 1990; Hora 2007; and O’Hagan et al. 2006), but 
they cannot eliminate them.  
One method for identifying and evaluating the bias in an expert elicitation is to assess if elicited values are well 
calibrated. As explained in Lichtenstein et al. (1982: 307) ‘… a judge is calibrated if, over the long run, for all 
propositions assigned a given probability, the true proportion equals the probability assigned’, where the true 
                                                           
11 For example, the FEEM solar study used both methods, but the elicited metric was aggregated (LCOE), while the Harvard 
solar survey elicited only percentiles, but focused on a finer level of detail (i.e., inverter costs, inverter lifetime, module cost, 
module lifetime). 
12 Anchoring occurs when an expert relies too heavily on the first piece of information (the "anchor”) she is presented with, 
so that initial impressions, estimates, or data anchor subsequent thoughts and judgments. The status quo trap arises because 
human beings are predisposed to perpetuating the status quo, displaying traits of self-protection and risk-aversion. The 
framing of a specific question can profoundly influence the choice of answers.  
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proportion reflects observations from the data. The literature reveals that people are typically poorly calibrated -- 
i.e., they are overconfident -- which means they provide estimates of uncertainty that are too narrow (Capen 
1976). Overconfidence increases with the difficulty of the judgment task, and decreases in the case of repeated 
tasks with continuous feedback (Lichtenstein and Fischhoff 1977, 1980).13 In practice, evaluating the calibration of 
experts is done by first assessing whether the answers given to particular questions (for which the answers are 
known) are well calibrated. If these answers are well calibrated, then the experts are also considered to be well-
calibrated when providing judgements related to unique events far in the future.  
Another common approach to reduce biases such as anchoring and status quo trap is explicitly briefing experts on 
the existence of such biases. Studies can also be designed to reduce bias. For instance, some of the studies in 
Table 1 asked experts about extreme scenarios first, forcing them to think about unexpected events and 
stretching their imagination, and thus reducing the tendency to anchor to the status quo. Some studies assessed 
both percentiles and probabilities, while in a couple of cases, the elicitation was repeated using two time 
horizons.14 These types of approaches force experts to make sure that their answers are consistent with each 
other. Finally, most of the studies decomposed the costs into multiple parts, thus reducing the complexity of the 
metrics evaluated by the experts.  
 

Relying on a Highly-qualified and Diverse Pool of Experts 
Selecting a highly qualified and diverse pool of experts helps to avoid the issue of obtaining judgements that are 
anchored on the current state of technology (Raiffa 1968) because experts in different technology areas, sectors, 
or regions will likely have different experiences, which will affect their estimates (Tversky and Kahneman 1974). 
                                                           
13 However, Colson and Cooke [2018] discuss how the use of calibration questions might help improve the quality of elicited 
information. 
14 Note that both modes of encoding - percentiles or probabilities – are subject to certain types of bias. For instance, eliciting 
percentiles is more prone to over-confidence than probabilities, with experts often reporting ranges of elicited costs that are 
too narrow and do not capture the full range of true uncertainty (Juslin et al. 1999). On the other hand, probabilities may 
anchor experts to the pre-defined endpoints, thus leading to a situation where only a small portion of the probability 
distribution is assessed, which means that the extreme values of the cost distribution (i.e., the best and worst possible 
outcomes) are not captured by the elicitation results. 
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This is confirmed in a set of studies -- Anadón et al. (2013), Verdolini et al. (2015) and Nemet et al. (2016) -- which 
find that for some technologies there is a systematic difference in the estimates provided by experts from the 
public sector, the private sector, or academia, as well as by experts from different geographical regions.15  
While diversity is important, the number of experts needed for a valid study is not clear because the notion of 
statistical significance is not entirely appropriate in the case of expert elicitations. First, expert elicitation is meant 
to provide a representation of the views of the community of experts; it is not a draw from some kind of 
underlying existing probability distribution. Second, informed experts are necessarily correlated because the 
existing knowledge about any technology, and especially novel ones, is necessarily limited. In fact, studies have 
found that there are diminishing marginal returns to additional experts after as few as three or four because the 
incremental gains in precision quickly diminish when experts are correlated (see e.g., Clemen and Winkler 1985, 
1999 and 2007). Thus, diversifying experts to reduce correlation should take priority over increasing the number 
of experts involved in the elicitation.  
The number of experts assessed in the studies in Table 1 varies from as few as three in a solar study (Baker et al. 
2009a) to as many as 163 in a wind study (Wiser et al. 2016). The average is 18 experts, with 56% of the studies 
having more than 12. Just over half of these studies had at least one participant each from academia, 
government, and the private sector. Academia was missing from three studies, industry from five, and 
government from seven. Most studies had specific reasons for selecting the particular set of experts, ranging from 
those most interested in breakthrough technologies (and thus focused on experts from academia and 
government) to those primarily interested in the current state of the technology (and thus focused exclusively on 
experts from industry). 

Choosing an Aggregation Method 
The issue of how to communicate data on uncertainty to final users is complex (Spiegelhalter et al. 2011). Of 
particular relevance to the presentation of expert elicitation results is the issue of how, and to what degree, 
results should be aggregated.16  
                                                           
15 See Appendix D in  the online supplementary materials for details. 
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No aggregation of individual experts 
Morgan (2014) argues that individual expert distributions should not be aggregated, but rather presented to 
decision makers in a disaggregated form in order to clearly reflect the diversity of the experts’ views. This 
approach has the advantage of allowing decision makers to see firsthand the range of disagreement among 
experts and to then decide how best to incorporate this into their decision processes. For decisions concerning 
low probability events that might have a large impact (e.g., seeding hurricanes with silver iodide to mitigate their 
destructive force), masking divergent views through an aggregation might prevent a well-informed decision 
process. However, for many issues, this approach would result in decision makers being flooded with information 
and left with the daunting task of translating this wealth of views into an action, which makes decisions 
vulnerable to biases (see e.g., Bunn 1985).  
Aggregating results to a single probability distribution 
Another approach is to aggregate results to provide a single probability distribution. Such aggregation can be 
mathematical (ranging from simple averages to more complex Bayesian models of aggregation) or behavioral 
(relying on experts reaching consensus through interaction and structured discussion). However, there is no 
consensus on the best method. Clemen and Winkler (1999) conclude that a combination of behavioral and 
mathematical methods may be prudent; they also argue that while all mathematical methods have pros and cons, 
the simple linear average performs quite well and is more robust than more complicated methods. Cooke and 
Goossens (2008) show that weighting experts based on their answers to test questions can result in a 
considerable improvement relative  to an unweighted average; however, identifying calibration questions for 
long-term predictions, such as those required for energy technologies, is not straightforward. Recent work on 
alternative mathematical aggregation methods, such as by median or quantiles, indicates that these methods 
have some attractive properties (Hora et al. 2013 investigate medians; Lichtendahl et al. 2013 investigate 
quantiles), and might be considered in place of, or along with, linear averaging. One approach that addresses 
concerns about misrepresenting the level of disagreement is to provide both aggregated and disaggregated data. 
                                                                                                                                                                                                            
16 See Clemen and Winkler (1999) and Hora et al. (2013) for overviews, and Baker and Olaleye (2013) for a specific example 
for energy RD&D portfolios. 
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Synthesis of expert data 
An alternative approach, which falls somewhere between the previous two, is to synthesize the expert data 
within a specific decision problem (e.g., policy makers choosing the level of RD&D investment in a particular 
energy technology) through mathematical or interactive methodologies. The mathematical methods employ non-
standard decision rules intended to reflect decision makers’ feelings about facing conflicting information (known 
as ambiguity aversion).17 For example, some decision makers may want to consider only the most pessimistic 
probability distributions over future technology costs derived from the elicitations. The interactive methods 
explicitly expose decision makers to the heterogeneity of expert estimates, with the aim of generating more 
robust policy choices.18 For example, analysts might present the range of implications of a specific investment in 
energy RD&D for an outcome of interest, such as the cost of electricity. Rather than presenting the policy maker 
with either too much individual data, or a single optimal choice based on an aggregate distribution, the 
interactive methods illustrate how a set of policy choices responds to the range of probability distributions of 
relevant parameters, and work with decision makers to find policies that best fulfill their objectives given the 
range of distributions.   
 
RESULTS OF TECHNOLOGY EXPERT ELICITATIONS AND COMPARISONS WITH THE BROADER 
LITERATURE 
With this background on expert elicitations, we next turn to an analysis of several energy technology elicitation 
studies to identify lessons from the current state of knowledge and key unresolved issues. We summarize the 
forecasted costs of five technologies (biofuels, bioelectricity, CCS, solar, and nuclear; see Table 1) from four 
research groups (UMass, Harvard, FEEM, and CMU; see Table 1), and compare the cost estimates from the 

                                                           
17 These methods range from Maxmin to more sophisticated methods applying ambiguity aversion using a function similar to 
a utility function, as in Heal and Millner (2014). 
18 These are known as “bottom up exploratory” methods, such as Robust Decision Making (Lempert and Collins 2007), 
Decision Scaling (Brown et al. 2012), and Info Gap (Ben-Haim 2004). 
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elicitation studies with historical data and other forecasts of the technology costs.19 We then discuss what the 
elicitations imply about the impact of RD&D investments on technology costs. Before discussing our findings, we 
outline the methodology used in our analysis.  

Methodology and Assumptions  
To compare the results from the expert elicitations and other data sources, we use two metrics: the technology 
cost estimates themselves, and the average annual changes in technology cost that are implicit in the cost 
estimates. The former illustrates how future technology costs compare to estimates of recent (historical) 
technology costs (i.e., in 2010). The latter shows whether experts believe the future rates of cost change will 
differ from past rates (calculated from historical data) or from other model forecasts (calculated from different 
estimates of future costs, such as from energy technology models). It is important to note that the elicited 
technology costs analyzed here are based on specific scenarios for RD&D funding. In order to compare technology 
costs across studies, we grouped the publically-funded RD&D amounts of the different studies into three funding 
scenarios: Low, Medium and High (see Table 2). We discuss the two metrics and our methodology in more detail 
next. 
Table 2: RD&D scenarios 

Low Mediu
m High Low Mediu

m High Low Mediu
m High Low Mediu

m High Low Mediu
m High

UMass 15 50 150 13 201 838 13 48 108 40 480 1980 25 140
Harvard 214 585 5,850 701 2,250 22,500 466 1,883 18,833 143 409 4,090
FEEM 169 254 338 168 252 336 800 1,514 15,140 171 257 342
CMU BAU 10 BAU BAU BAU 10 BAU

 RD&D Level  (million 2010$)

Combined w/ bioelectricity

Bioelectricity Biofuel CCS Nuclear Solar

 
Notes: BAU stands for business-as-usual 
 
Technology cost estimates 

                                                           
19 Further details on the data used can be found in Appendices C and E in the online supplementary materials. 
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The common metric used to compare technology cost estimates across studies is $/kWh.20 This data 
standardization ensures that the cost units are the same across studies and across technologies. Note, however, 
that the cost estimates cannot be directly compared across different technologies because they capture different 
types of costs. In the case of solar, the costs represent the full LCOE, accounting for all costs (other than grid 
integration);21 for both bioenergy metrics the costs represent the levelized non-energy cost (i.e. excluding fuel 
costs); for nuclear, the costs represent the levelized capital cost (excluding O&M, fuel cost, and waste storage); 
and for CCS, the costs represent the levelized additional capital cost (which would need to account for the energy 
penalty and be added to the levelized cost of fossil generation to get the full cost of electricity).22  
The distribution of standardized elicited cost data for each technology, study, and RD&D scenario are indicated as 
vertical lines in the top panel (A) of Figure 1. More specifically, the ends of the thin vertical lines show the lowest 
10th percentile and the highest 90th percentile of elicited costs in each study (i.e., for studies that elicited 
percentiles, these represent the most and least optimistic estimate among all experts in the study, for a given 
RD&D level); the ends of the thick lines show the median of the 10th and 90th percentiles among experts (i.e., the 
median of the most optimistic and the most pessimistic estimates for a given RD&D scenario in a given study); and 
the markers in the line (i.e., dot, square, triangle) show the median value of the median estimates in a given study 
for each RD&D level. The distribution of elicited costs are then compared to representative 2010 costs (horizontal 
dashed lines in the top panel).23 

Average annual changes in technology cost 

We compare elicited technology costs for 2030 with other forecasts in the literature using the average annual 
change in technology cost (see the bottom panel (B) of Figure 1). We calculate this average annual change as the 
fixed annual reduction in cost that would produce a path from the cost at the starting year to the cost at the 
                                                           
20 The details of the standardization procedure are provided in Appendix C in the on-line supplementary materials. 
21 Note that this cost was calculated assuming a capacity factor of 12% (to be consistent with the implicit assumptions of the 
FEEM study); the costs would be about 35% lower if instead the capacity factor were 18.5%. 
22 Note that in the specific case of the UMASS CCS data, we show the 10th, 50th and 90th percentiles of a distribution which 
aggregates experts in that particular study. 
23 See Table E.1 in the on-line supplementary materials for details on sources for the 2010 cost data. 
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ending year of the period under consideration,24 with the specific starting and ending years depending on the 
data or elicitation.25 The vertical lines represent the distribution of the average annual change in technology costs 
based on the expert elicitation data for each study, technology, and RD&D scenario. The ends of the thin lines 
show the lowest 10th percentile and the highest 90th percentile of the average annual change in technology 
costs; the ends of the thick lines show the median of the 10th and 90th percentiles; and the markers in the line 
show the median of the medians. The horizontal lines and bands in panel B represent ranges of estimates from 
historical data sources or other forecasts.26  

Discussion of Results  
We next discuss the key results and implications of our analysis (shown in Figure 1), first for energy technology 
costs, then for average annual changes in technology costs, and finally for the impact of RD&D investments on 
energy technology costs.  
Energy technology costs 
Panel A of Figure 1 indicates the extent to which experts foresee a decrease in future energy technology costs 
relative to energy technology costs in 2010. Two results stand out. First, the elicited costs differ substantially 
across studies within the same technology categories. This is particularly apparent in the case of bioelectricity, but 
also for nuclear and solar. Three meta-analysis studies – Anadón et al. (2013), Verdolini et al. (2015) and Nemet et 

                                                           
24 These values are calculated as the linear average rate of change using the formula:  

  

where t0 and t1 are the starting and final years of the interval considered, and Costt0 and Costt1 are the relevant cost for 
those two years. 
25 The calculated cost reduction rates are highly dependent on the starting and final years of the interval considered (as 
shown in Nemet 2009). Thus, we show multiple ranges of estimates when they exist or can be calculated. For the elicitations, 
the starting year (t0) is 2010 and the ending year (t1) is 2030. See Appendix E in the on-line supplementary materials for 
further details concerning the sources and coverage of the data used for the comparisons. 
26 There are two important caveats for interpreting Figure 1. First, the historical data used for the comparisons was more 
appropriate for some technologies than for others. Second, as discussed earlier, the time intervals of the comparisons have 
different implications. 
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al. (2016) – argue that differences in elicitation design (including choice of experts, mode of elicitation, and 
format of the questions) lead to these differences in estimates.  
Second, some of the estimated costs for 2030 provided by experts are higher than the average values for 2010 
(horizontal lines). This may be explained partly by the fact that the estimated costs have a wide range, even in 
2010; for example, in the Harvard study, the elicited distributions for solar PV for 2010 varied significantly, due to 
geographical variability and other factors.27  
Overall, experts expect there to be a decrease in the cost of most technologies, in the sense that the median costs 
(round, triangle or square markers), along with a large part of the future cost distribution (vertical lines), are 
lower than the 2010 cost (dashed horizontal line) for the different RD&D scenarios. Furthermore, the possibility of 
technology breakthroughs and failures is reflected in the wide range of most expert estimates (i.e., the vertical 
lines span large ranges of costs, with the upper end indicating a worst case estimate and the lower end indicating 
the best possible outcome). In particular, in the case of nuclear, the median cost is estimated to remain close to 
the 2010 average cost, with many of the highest cost estimates (90th percentiles) above current costs. 

 

                                                           
27 This broad range of costs in the ‘present’ is consistent with data in IRENA (2014). 
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Figure 1: Technology Cost Estimates from Elicitation Studies and Comparison with Historical Data and Other Forecasts  
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Notes: The top panel (A) shows 2030 technology cost estimates from selected energy technology expert elicitations compared to current technology costs. The bottom panel (B) shows the implied average annual rate of cost change compared to cost change rates from past data and other forecast methods. The vertical lines in Panel A indicate the distribution of standardized elicited cost data for each technology, study, and RD&D scenario. The vertical lines in Panel B indicate the distribution of the average annual change in technology costs based on the expert elicitation data for each study, technology, and RD&D scenario. The horizontal lines and bands in Panel B indicate the implied annual rates of cost change from specific studies. Year ranges next to the source of data in Panel B indicate the range of data used to deterministically forecast costs in 2030.  The square brackets next to the study name on the x-axis indicate the number of experts included in each study. See Appendix E in the on-line supplementary materials for more details. 
Sources: Panel A: Expert elicitation cost data: see Table 1. 2010 costs: see table E.1 in the on-line supplementary materials. Panel B: Rate of average cost decrease for expert elicitation data: own calculations. Implied annual rates of cost change from other sources: Juninger et al. (2006), Goldemberg et al. (2004), Escobar Rangel and Lévêque (2012), Gruebler (2010), Fraunhofer (2015), IEA (2014).   
 

Average annual change in technology cost 

Panel B of Figure 1 suggests a relationship between past cost trends of energy technologies and experts’ beliefs 
about future costs. Indeed, the vertical lines (which indicate cost decreases from expert elicitations) often cross 
the horizontal bands (which indicate cost decreases from other sources). For all technologies except nuclear, the 
medians are well below zero, which means the experts generally believe future costs will decrease (i.e., the future 
will be similar to past experience). However, the technologies differ in the degree to which the experts see the 
future as being similar to the past; that is, the extent to which the median estimate of the cost decrease based on  
elicited data lies in the same range as other estimates of cost decreases. For example, for biofuels, the median 
rates of change are very similar to what has been seen historically. On the other hand, experts are not particularly 
optimistic about nuclear, which has had past increases in costs. Nevertheless, they are more optimistic than past 
data (primarily cost increases) would imply. This may simply reflect experts’ optimism, or it may be a sign that 
experts believe that current research, modelling, and licensing practices make it less likely that costs will continue 
to increase in the future. Note that the rate of cost change for most of the nuclear elicitations overlaps with the 
historical data, suggesting that continued increases are expected by some experts. The experts expect a 
significant slowdown in the rate of change of bioelectricity costs, at least when compared to the experience in 
Sweden (which provided the historical rates for bioelectricity). The figure indicates that only the UMass experts 
foresaw a reasonable chance of a continuation of such rapid cost decreases. This means that either the experts in 
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the other studies believe that much of the cost reduction has been achieved or that they were over-confident and 
did not account for the kind of rapid cost reduction that was recently seen in Sweden.  
The results for solar are particularly interesting. The lowest band (based on estimates from Fraunhofer (2015), 
relative to the period 2010 to 2014) indicates a recent significant annual cost decrease over a short period of 
time. However, the experts appear to believe that in the long term, the annual rate of decrease will be, on 
average, similar to what it has been seen over longer historical periods and similar to other forecasts (e.g., IEA, 
2014). There are two possible interpretations for this result. First, it is possible that experts in the elicitations 
missed a fundamental change to the trajectory of costs that started in 2010 and will continue; this is a real 
possibility since most of the elicitations took place before 2010, when prices started falling rapidly. Second, the 
experts may have correctly estimated the long term trajectory of solar, with the short term rapid reductions in 
cost indicating not a change in the trajectory, but rather a simple random deviation.  

 

The impact of RD&D investments on energy technology costs  

Elicitation results provide insights regarding the impact of RD&D on the full distribution of technology cost as well 
as insights into the presence of diminishing returns to RD&D investments. While historical evidence from other 
sources is useful for determining the role of public energy RD&D investments in past cost and performance 
improvements, elicitations can indicate the importance of energy technology RD&D in the future. Indeed, the use 
of estimates from expert elicitations can help decision makers understand what they are “buying” with RD&D, 
thus making them less likely to be surprised by the outcomes of their investments because they are better able to 
“anticipate the unexpected” (Morgan et al. 1992). With this in mind, we examine what the results of our analysis 
of expert elicitations tell us about the impact of RD&D investments on energy technology costs. 
First, panel A in Figure 1 indicates that RD&D affects the entire cost distribution. More specifically, for all 
technologies except nuclear, a higher level of RD&D leads to lower median costs (see the markers in the vertical 
lines) and also lowers the extreme cost estimates (see the ends of the vertical lines). This is particularly true for 
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the bad-outcome high-cost tails (see the top extreme of the vertical lines). 28 Thus, higher RD&D is associated with 
greater rates of cost reduction. Note, however, that there is heterogeneity across technologies. For instance, 
although for solar increased RD&D is associated with visible cost reductions in all the studies presented, this is 
less the case for bioelectricity. 
The data from the expert elicitations also indicate that higher RD&D investments do not reduce the range of 
uncertainty (i.e., they do not consistently shorten the length of the vertical lines, which represents the variation in 
experts’ estimates). Indeed, panel A of Figure 1 suggests that a higher investment sometimes leads to a wider 
range and sometimes a narrower range of elicitation values (i.e., to longer or shorter vertical lines).  
Finally, the evidence from panel B in Figure 1 indicates decreasing returns to scale for RD&D investments --  that 
is, increasing RD&D investments may decrease technology costs, but at a decreasing rate. 
These insights are consistent with the findings of other studies. Anadón et al. (2013), Verdolini et al. (2015), and 
Nemet et al. (2016) show that higher RD&D investments are associated with lower elicited technology costs. In 
particular, Nemet et al. (2016) show that going from a low to a high RD&D scenario, median costs drop by roughly 
4% for solar, 2% for bioenergy, and 1% for nuclear and biofuel.29 This variation may reflect different technological 
maturity and perceived cost-reduction options. However, one must be extremely careful in making such 
comparisons across technologies because the dollar amount of RD&D expenditures in the Low, Medium and High 
Scenarios differs significantly across technologies (see Table 2).  Anadón et al. (2013), Verdolini et al. (2015) and 
Nemet et al. (2016) also show that increased RD&D does not necessarily increase the probability of achieving 
lower costs in the future. Anadón et al. (2016a) explicitly consider the impact of additional RD&D expenditures on 
the probability distributions for performance and cost, and find that elicitations predict decreasing returns to 
investment, and that the current US funding levels for most of the technologies fall into a range with predicted 
decreasing marginal returns. Note, however, that decreasing returns do not imply that investment is not justified.   

                                                           
28 See also Appendix F in the on-line supplementary materials for further details. 
29 Note, however, that this result is based on the use of categorical variables for R&D levels and does not allow a comparison 
of the impact of one additional dollar on the costs of different technologies. 
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Finally, it is also important to note that the impact of RD&D on median cost is small relative to the range of 
uncertainty (i.e. the length of the vertical lines) in panel A of Figure 1, suggesting that while experts believe that 
RD&D will play a role in reducing technology costs in the future, it is not the only component that matters. Many 
other factors (e.g., material costs, economies of scale) play important roles in the evolution of technology costs.  
Summary of Results 
We have argued  that expert elicitations provide insights about the future costs of energy technologies, especially 
regarding uncertainty, which complement other sources of information and analytical approaches (such as 
engineering models, historical data, and other types of forecasts). Comparing elicitation forecasts with past data 
allows us to determine whether experts expect the evolution of technical change to continue on a historical path 
or that they believe the future will be different from the past. Comparing elicited costs with costs recorded in a 
time period after the elicitations have taken place (e.g., when comparing solar costs elicited in 2007 by UMass 
with the 2010-2014 data from Fraunhofer 2015) provides a sort of ex-post validation exercise, indicating whether 
experts’ forecasts were too conservative or too optimistic. Comparing elicited costs with other forecasts made at 
a similar time indicates how perceptions emerging from expert elicitations differ from those emerging from other 
methodologies, in particular learning or experience curves.  

In summary, our discussion of the results from several energy technology expert elicitations and Figure 1 reveal 
some key insights concerning the future costs of energy technologies and the associated uncertainty. First, and 
most simply, experts largely believe that increased public RD&D investments will result in reductions in future 
technology costs by 2030, although possibly with diminishing marginal returns. Second, implicit median annual 
rates in cost reduction collected through expert elicitations partly reflect historical trends, but the information 
collected is much richer, thus allowing the design of more robust policies. Third, for all technologies, experts see 
the possibility of breakthroughs that would make the technology cost competitive, envisioning sustained annual 
rates of cost reduction in the order of 10% per year. Moreover, such breakthroughs appear more likely under 
higher RD&D. Fourth, the range of uncertainty and disagreement among the technologies and teams seems to 
imply that there are benefits to a portfolio approach to technology RD&D, rather than picking a small number of 



23 

winners (Anadón et al. 2016a). Finally, overall, our results highlight that one of the values of expert elicitation 
relative to other sources of cost estimates lies in its ability to provide information about the full distribution of 
costs rather than providing one single, deterministic estimate. Integrating this information into decision making 
often leads to near term decisions that are significantly different from those identified by simply doing sensitivity 
analysis across all possible individual outcomes (see the discussion and examples in Wallace, 2000). For example, 
if policy makers understand that the uncertainty around the cost of a particular technology is large, they may 
decide to devote additional financial resources to exploring a wide range of novel technological paths, rather than 
simply investing in the development of the current technology. Such a decision is less likely to emerge if policy 
makers are relying on deterministic estimates that mask the uncertainty about the technology. 
 
CONCLUSIONS AND FUTURE RESEARCH NEEDS 
In the spirit of Convery and Wagner (2015), this article has provided an up-to-date summary of what we know, 
and what we do not know, about the future of technological progress in energy and how it is influenced by public 
RD&D efforts. These insights are key to both the design of energy RD&D portfolios and the development of better 
projections of the costs of future climate-mitigation scenarios. We presented an overview of expert elicitation and 
reviewed the evidence emerging from expert elicitation studies on the future of energy technologies. We have 
argued that the data on future energy costs provided by expert elicitations complements data on the evolution of 
technological costs and the past performance of RD&D programs. As shown in Figure 1, elicitation data provides 
insights about the range of future possibilities. Importantly, this includes the impact of prospective policies and 
improvements enabled by new scientific developments. The comparison of elicitation data with past data 
indicates whether experts believe that the future evolution of technology costs will be different from the past. 
Incorporating uncertainty may lead to near term decisions that are significantly different from decisions made 
with point estimates. While scientists and economists are often more comfortable with point estimates derived 
from past data, we have shown here that uncertainty about the future is much wider than can be derived from 
past data, and that surprises, both happy and unhappy, are real possibilities that need to be accounted for. The 
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presence of multiple studies covering similar technologies highlights the complexity of representing uncertainty. 
Including insights from energy technology expert elicitations allows for more transparent and informed decision 
making that incorporates technical uncertainty into the design and assessment of energy and climate change 
mitigation policies.  
This examination of expert elicitation also reveals some important gaps in the literature, which provide a guide to 
future research in this area. First, although many elicitation studies ask experts to consider current or increased 
RD&D investments, very few considered drastic reductions to current RD&D spending.30 In times of tight 
governmental budgets, it is important to assess what would happen if RD&D programs were scaled down. Second, 
it is important to extend expert elicitations to include experts from emerging economies in order to obtain a more 
comprehensive picture of how technologies might progress in those countries. Third, some technology areas, 
such as utility scale energy storage, wind, vehicles, gas turbines, geothermal, and energy efficiency technologies, 
have been the subject of few, or no, publicly available expert elicitations. Thus, the ability to analyze these 
technologies and how they fit into energy RD&D portfolios is more limited. Fourth, only a few expert elicitations 
included specific questions on the diffusion of energy technologies; future work might address how governments 
should allocate public resources between public RD&D and deployment (see for instance Anadón et al. 2012).  
Fifth, there is potential to incorporate data from expert elicitations into more complex analyses (e.g., the impact 
of increased funding on the joint reduction of uncertainty; the definition of robust energy RD&D portfolios that 
account for multiple societal objectives). Finally, to further improve the science of expert elicitations, the 
elicitation data compiled for this article could be used in future analyses that compare these cost estimates with 
actual technology cost trajectories. 
Overall, the recent emergence of data on future energy costs through expert elicitations provides the opportunity 
and, we would argue, the obligation to more rigorously and transparently introduce considerations of uncertainty 
around technical change into discussions about energy policies and climate change mitigation. We believe this is 
essential given the magnitude of the uncertainties involved and their impact on costs. The elicited probabilistic 

                                                           
30 The exceptions are Jenni et al. (2013); Fiorese et al. (2014); Ricci et al. (2014); and NRC (2007). 
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information summarized in this article sheds light on where technological progress is most likely, and how it may 
be influenced by public RD&D efforts.  
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